Selective biomass photoreforming for valuable chemicals and fuels: A critical review

U Nwosu, AWang, B Palma, H Zhao, MA Khan, Md Kibria, J Hu*. Renewable and Sustainable Energy Reviews, 148, 1112662021. DOI:10.1016/j.rser.2021.111266

REVIEW high resolution.jpg

PtO nanodots promoting Ti3C2 MXene in-situ converted Ti3C2/TiO2 composites for photocatalytic hydrogen production

JX Yang, WB Yu, CF Li, WD Dong, LQ Jiang, N Zhou, ZP Zhuang, J Liu, ZY Hu, H Zhao, Y Li, L Chen, J Hu, BL Su. Chemical Engineering Journal, 420, 129695, 2021. DOI:10.1016/j.cej.2021.129695

Trichoderma bridges waste biomass and ultra-high specific surface area carbon to achieve a high-performance supercapacitor

Z Liu, J Hu, F Shen, D Tian, M Huang, J He, J Zou, L Zhao, Y Zeng. Journal of Power Sources, 497, 229880, 2021. DOI:10.1016/j.jpowsour.2021.229880

3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor

X Wan, F Shen, J Hu, M Huang, L Zhao, Y Zeng, D Tian, G Yang, Y Zhang. International Journal of Biological Macromolecules, 180, 51-60, 2021. DOI:10.1016/j.ijbiomac.2021.03.048

Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming

H Zhao, X Yu, CF Li, W Yu, A Wang, ZY Hu, S Larter, Y Li, MG Kibria, J Hu*. Journal of Energy Chemistry, 201-208, 2022. DOI:10.1016/j.jechem.2021.04.033

carbon quantum dots.jpg

Conceptually integrating a multi-product strategy for the valorization of kitchen waste towards a more sustainable management

M Wu, J Hu, F Shen, M Huang, L Zhao, D Tian, Y Zhang, Y Liu, Y Zeng, S Deng, Journal of Cleaner Production, 127292, 2021. DOI:10.1016/j.jclepro.2021.127292

Surfactant-Free Cellulose Filaments Stabilized Oil in Water Emulsions

A Varamesh, R Prathapan, A Telmadarreie, J Li, K Gourlay, G Minhas, Q Lu, SL. Bryant, J Hu, 2021. PREPRINT (Version 1) available at Research Square. DOI:10.21203/

Cannabis as a Feedstock for the Production of Chemicals, Fuels, and Materials: A Review of Relevant Studies To Date

FP Gomez, J Hu, MA Clarke, Energy & Fuels 35 (7), 5538-55572021. DOI:10.1021/acs.energyfuels.0c04121

Eco-friendly additives in acidic pretreatment to boost enzymatic saccharification of hardwood for sustainable biorefinery applications

Q Chu, W Tong, S Wu, Y Jin, J Hu, K Song, Green Chemistry, 2021. DOI:10.1039/D1GC00738F


Full utilization of sweet sorghum for bacterial cellulose production: A concept of material crop

Q Wang, PC Nnanna, F Shen, M Huang, D Tian, J Hu, Y Zeng, G Yang, S Deng, Industrial Crops and Products, vol. 162, 126508, 2021. DOI:10.1016/j.indcrop.2021.113256

Valorizing the waste bottom ash for improving anaerobic digestion performances towards a “Win-Win” strategy between biomass power generation and biomethane production

Q Xiao, J Hu, M Huang, F Shen, D Tian, Y Zeng, MK Jang, Journal of Cleaner Production, 126508, 2021. DOI:10.1016/j.jclepro.2021.126508

Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction

H Zhao, CF Li, X Yong, P Kumar, B Palma, ZY Hu, G Van Tendeloo, S Siahrostami, S Larter, D Zheng, S Wang, Z Chen, MG Kibria, J Hu*Iscience, 102109, 2021. DOI:10.1016/j.isci.2021.102109


Lipase-Immobilized Cellulosic Capsules with Water Absorbency for Enhanced Pickering Interfacial Biocatalysis

X He, BP Binks, J Hu, I Gates, Q Lu, Langmuir, vol. 37, pp.810-819, 2021. DOI:10.1021/acs.langmuir.0c03140

Electropolymerized Metal-Protoporphyrin electrodes for Selective Electrochemical Reduction of CO2

N YasriT Al-AttasJ Hu* MG Kibria, Catal. Sci. Technol., 2021. DOI:10.1039/D0CY02150D



Dual Physically Cross‐Linked Hydrogels Incorporating Hydrophobic Interactions with Promising Repairability and Ultrahigh Elongation

X Liu, X He, B Yang, L Lai, N Chen, J Hu*, Q Lu, Adv. Funct. Mater, 2008187, 2020. DOI:10.1002/adfm.202008187

Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins

Y Chen, Y Jiang, D Tian, J Hu, J He, G Yang, L Luo, Y Xiao, S Deng, O. Deng, W. Zhou, F. Shen, International Journal of Biological Macromolecules, vol. 164, pp. 3038-3047, 2020. DOI:10.1016/j.ijbiomac.2020.08.167

Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wastes for dye removal

R Zhai, J Hu, X Chen, Z Xu, Z Wen, M Jin, Bioresource Technology, vol. 315, 123846, 2020. DOI:10.1016/j.biortech.2020.123846

np Heterojunction of TiO2-NiO Core-shell Structure for Efficient Hydrogen Generation and Lignin Photoreforming

H Zhao, CF Li, LY Liu, B Palma, ZY Hu, S Renneckar, S Larter, Y Li, MG Kibria, J Hu*, BL Su, Journal of Colloid and Interface Science, 2020. DOI: 10.1016/j.jcis.2020.10.049


In Situ Alignment of Bacterial Cellulose Using Wrinkling

R Prathapan, AK Ghosh, A Knapp, A Vijayakumar, NNJ Bogari, B Abraham, A Al-Ghabkari, A Fery, J Hu*, ACS Appl. Bio Mater., 2020. DOI:10.1021/acsabm.0c01030


Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals

X Wu, H Zhao, MA Khan, P Maity, T Al-Attas, S Larter, Q Yong, O Mohammed, MG Kibria, J Hu*ACS Sustainable Chem. Eng., 8, 15772-15781, 2020. DOI:10.1021/acssuschemeng.0c06282


A novel strategy to alleviate medium acidosis for simultaneously yielding more bacterial cellulose and electricity

Q Wang, D Tian, J Hu, Y Zeng, F Shen, RSC Advances, vol. 10, no. 53, pp. 31815-31818, 2020. DOI:10.1039/D0RA06245F

Why can hydrothermally pretreating lignocellulose in low severities improve anaerobic digestion performances?

C Xiang, D Tian, J Hu, M Huang, F Shen, Y Zhang, G Yang, Y Zeng, S. Deng, Science of The Total Environment, vol. 752, 141929, 2020. DOI:10.1016/j.scitotenv.2020.141929

Harvesting bacterial cellulose from kitchen waste to prepare superhydrophobic aerogel for recovering waste cooking oil towards a closed-loop biorefinery

Q Wang, D Tian, J Hu, M Huang, F Shen, Y Zeng, G Yang, Y Zhang, J He, ACS Sustainable Chemistry & Engineering, vol. 8, no. 35, pp. 13400-13407, 2020. DOI:10.1021/acssuschemeng.0c04212

Enzyme-Mediated Lignocellulose Liquefaction Is Highly Substrate-Specific and Influenced by the Substrate Concentration or Rheological Regime

T van der Zwan, A Sigg, J Hu, RP Chandra, JN Saddler, Frontiers in Bioengineering and Biotechnology, vol. 8, pp. 917, 2020. DOI:10.3389/fbioe.2020.00917

Synergism of Recombinant Podospora anserina PaAA9B with Cellulases Containing AA9s Can Boost the Enzymatic Hydrolysis of Cellulosic Substrates

L Long, H Yang, H Ren, R Liu, FF Sun, Z Xiao, J Hu, Z Xu, ACS Sustainable Chemistry & Engineering, vol. 8, no. 32, pp. 11986-11993, 2020. DOI:10.1021/acssuschemeng.0c02564

Deacetylation Processing of Waste Cigarette Butts for High-Titer Bioethanol Production toward a Clean Recycling Process

F Shen, D Tian, G Yang, S Deng, F Shen, J He, Y Zhu, C Huang, J Hu, ACS Sustainable Chemistry & Engineering, vol. 8, no. 30, pp. 11253-11262, 2020. DOI:10.1021/acssuschemeng.0c03979

Substrate Characteristics That Influence the Filter Paper Assay’s Ability to Predict the Hydrolytic Potential of Cellulase Mixtures

D Mboowa, RP Chandra, J Hu, JN Saddler, ACS Sustainable Chemistry & Engineering, vol. 8, no. 28, pp. 10521-10528, 2020. DOI:10.1021/acssuschemeng.0c02883

Valorization of composting leachate for preparing carbon material to achieve high electrochemical performances for supercapacitor electrode

Z Liu, D Tian, F Shen, PC Nnanna, J Hu, Y Zeng, G Yang, J He, S Deng, Journal of Power Sources, vol. 458, pp. 228057, 2020. DOI:10.1016/j.jpowsour.2020.228057

Evaluation of Hydrothermal Pretreatment on Lignocellulose-Based Waste Furniture Boards for Enzymatic Hydrolysis

J Zhao, D Tian, J Hu, F Shen, Y Zeng, G Yang, C Huang, L Long, S Deng, Appl. Biochem. Biotechnol., vol. 192, pp. 415–431, 2020. DOI:10.1007/s12010-020-03315-9

Recent Progress in Cellulose Nanocrystal Alignment and Its Applications

R. Prathapan, R. F. Tabor, G. Garnier, and J. Hu*, ACS Appl. Bio Materials, vol. 3, no. 4, pp. 1828–1844, Apr. 2020. DOI:10.1021/acsabm.0c00104

Potential of Xylanases to Reduce the Viscosity of Micro/Nanofibrillated Bleached Kraft Pulp

D. Tian, N. Zhong, J. Leung, F. Shen, J. Hu*, and J. N. Saddler, ACS Appl. Bio Materials, vol. 3, no. 4, pp. 2201–2208, Apr. 2020. DOI:10.1021/acsabm.0c00041

Techno-economic analysis of a solar-powered biomass electrolysis pathway for coproduction of hydrogen and value-added chemicals

MA Khan, TA Al-Attas, NG Yasri, H Zhao, S Larter, J Hu*, MG Kibria, Sustainable Energy & Fuels, vol. 4, no. 11, pp. 5568–5577, 2020. DOI:10.1039/D0SE01149E 


Electrocoagulation Separation Processes

N Yasri, J Hu, MG Kibria, EPL Roberts, in Multidisciplinary Advances in Efficient Separation Processes, vol. 1348, American Chemical Society, pp. 167-203 Chapter 6, 2020. DOI:10.1021/bk-2020-1348.ch006

Fabrication and characterization of lignin-xylan hybrid nanospheres as pesticide carriers with enzyme-mediated release property

Y Jiang, Y Chen, D Tian, F Shen, X Wan, L Xu, Y Chen, H Zhang, J Hu, F. Shen, Soft Matter, 2020. DOI:10.1039/D0SM01402H

Hierarchical Ni(OH)2/Cu(OH)2 interwoven nanosheets in situ grown on Ni–Cu–P alloy plated cotton fabric for flexible high-performance energy storage

M Zhou, Z Jin, L Su, K Li, H Zhao, J Hu, Z Cai, Y Zhao, Nanoscale Advances, vol. 2, no. 8, pp. 3358-3366, 2020. DOI:10.1039/D0NA00210K

Acidic deep eutectic solvents pretreatment for selective lignocellulosic biomass fractionation with enhanced cellulose reactivity

D Tian, Y Guo, J Hu, G Yang, J Zhang, L Luo, Y Xiao, S Deng, O Deng, W. Zhou, F. Shen, International journal of biological macromolecules, vol. 142, pp. 288-297, 2020. DOI:10.1016/j.ijbiomac.2019.09.100



Valorizing kitchen waste through bacterial cellulose production towards a more sustainable biorefinery

M Wu, W Chen, J Hu, D Tian, F Shen, Y Zeng, G Yang, Y Zhang, S Deng, Science of The Total Environment, vol. 695, 133898, 2019. DOI:10.1016/j.scitotenv.2019.133898

Improving enzymatic saccharification of hardwood through lignin modification by carbocation scavengers and the underlying mechanisms

Q Chu, K Song, J Wang, J Hu, X Chen, Bioresource technology, vol. 294, 122216, 2019. DOI:10.1016/j.biortech.2019.122216

Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents

X Wan, F Yao, D Tian, F Shen, J Hu, Y Zeng, G Yang, Y Zhang, S Deng, Biomolecules, vol. 9, no. 12, pp. 844, 2019. DOI:10.3390/biom9120844

Mild Acid-Catalyzed Atmospheric Glycerol Organosolv Pretreatment Effectively Improves Enzymatic Hydrolyzability of Lignocellulosic Biomass

K Pascal, H Ren, FF Sun, S Guo, J Hu, J He, ACS Omega, vol. 4, no. 22, pp. 20015-20023, 2019. DOI:10.1021/acsomega.9b02993

Synthesis of a polydopamaine nanoparticle/bacterial cellulose composite for use as a biocompatible matrix for laccase immobilization

R. Zhai, X. Chen, M. Jin, and J. Hu*, Cellulose, vol. 26, no. 15, pp. 8337–8349, 2019. DOI: 10.1007/s10570-019-02588-6


Integrated process for the coproduction of fermentable sugars and lignin adsorbents from hardwood

Q Chu, K Song, J Hu, Q Bu, X Zhang, X Chen, Bioresource technology, vol. 289, 121659, 2019. DOI:10.1016/j.biortech.2019.121659

Controllable synthesis uniform spherical bacterial cellulose and their potential applications

C. Meng, J. Hu*, K. Gourlay, C. Yu, and J. N. Saddler, Cellulose, vol. 26, no. 15, pp. 8325–8336, 2019. DOI:10.1007/s10570-019-02446-5


Integrating the Bottom Ash Residue from Biomass Power Generation into Anaerobic Digestion To Improve Biogas Production from Lignocellulosic Biomass

Q Xiao, W Chen, D Tian, F Shen, J Hu, L Long, Y Zeng, G Yang, S Deng, Energy & Fuels, vol. 34, no.2, pp. 1101-1110, 2019. DOI:10.1021/acs.energyfuels.9b01898

The Potential of Using Thermostable Xylan-Binding Domain as a Molecular Probe to Better Understand the Xylan Distribution of Cellulosic Fibers

L. Long, J. Hu*, X. Li, Y. Zhang, and F. Wang, ACS Sustain. Chem. Eng., vol. 7, no. 14, pp. 12520–12526, Jul. 2019. DOI:10.1021/acssuschemeng.9b02261

Synthesis, characterization and enzymatic surface roughing of cellulose/xylan composite films

L. Long, F. Shen, F. Wang, D. Tian, and J. Hu*, Carbohydr. Polym, vol. 213, pp. 121–127, 2019. DOI: 10.1016/j.carbpol.2019.02.086

A comparative investigation of H2O2-involved pretreatments on lignocellulosic biomass for enzymatic hydrolysis

M Luo, D Tian, F Shen, J Hu, Y Zhang, G Yang, Y Zeng, S Deng, Y Hu, Biomass Conversion and Biorefinery, vol. 9, no. 2, pp. 321-331, 2019. DOI: 10.1007/s13399-018-0364-0

Hierarchical Ni@ Ni(OH)2 core-shell hybrid arrays on cotton cloth fabricated by a top-down approach for high-performance flexible asymmetric supercapacitors

Z Jin, M Zhou, J Hu, K Li, L Tang, H Zhao, Z Cai, Y Zhao, Journal of Alloys and Compounds, vol. 784, pp. 1091-1098, 2019. DOI:10.1016/j.jallcom.2019.01.027

Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept

K Song, Q Chu, J Hu, Q Bu, F Li, X Chen, A Shi, Bioresource technology, vol. 276, pp. 161-169, 2019. DOI:10.1016/j.biortech.2018.12.107

Recycling solvent system in phosphoric acid plus hydrogen peroxide pretreatment towards a more sustainable lignocellulose biorefinery for bioethanol

F Yao, D Tian, F Shen, J Hu, Y Zeng, G Yang, Y Zhang, S Deng, J Zhang, Bioresource technology, vol. 275, pp. 19-26, 2019. DOI:10.1016/j.biortech.2018.12.040

Valorizing waste lignocellulose-Based furniture boards by phosphoric acid and hydrogen peroxide (Php) pretreatment for bioethanol production and high-Value lignin recovery

J Zhao, D Tian, F Shen, J Hu, Y Zeng, C Huang, Sustainability, vol. 11, no. 21, 6175, 2019. DOI:10.3390/su11216175

The effects of metal elements on ramie fiber oxidation degumming and the potential of using spherical bacterial cellulose for metal removal

C. Meng, N. Zhong, J. Hu*, C. Yu, and J. N. Saddler, J. Clean. Prod., vol. 206, pp. 498–507, 2019. DOI:10.1016/j.jclepro.2018.09.072



Two-stage pretreatment with alkaline sulphonation and steam treatment of Eucalyptus woody biomass to enhance its enzymatic digestibility for bioethanol production

Q Chu, K Song, Q Bu, J Hu, F Li, J Wang, X Chen, A Shi, Energy Conversion and Management, vol. 175, p. 236-245, 2018. DOI: 10.1016/j.enconman.2018.08.100

Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings

J Qiu, D Tian, F Shen, J Hu, Y Zeng, G Yang, Y Zhang, S Deng, J Zhang, Bioresource technology, vol. 268, pp. 355-362, 2018. DOI: 10.1016/j.biortech.2018.08.009

Enhancing bacterial cellulose production via adding mesoporous halloysite nanotubes in the culture medium

D. Tian, F. Shen, J. Hu*, S. Renneckar, and J. N. Saddler, Carbohydr. Polym., vol. 198, pp. 191–196, 2018. DOI: 10.1016/j.carbpol.2018.06.026

The potential of using immobilized xylanases to enhance the hydrolysis of soluble, biomass derived xylooligomers

J Hu, J Davies, YK Mok, C Arato, JN Saddler, Materials , vol. 11, no. 10, 2005, 2018. DOI: 10.3390/ma11102005

Functionalizing bottom ash from biomass power plant for removing methylene blue from aqueous solution

Z Liu, D Tian, J Hu, F Shen, L Long, Y Zhang, G Yang, Y Zeng, J Zhang, J. He, S. Deng, Y. Hu, Science of the Total Environment, vol. 634, pp. 760-768, 2018. DOI: 10.1016/j.scitotenv.2018.04.010

Enhanced high-solids fed-batch enzymatic hydrolysis of sugar cane bagasse with accessory enzymes and additives at low cellulase loading

MR Mukasekuru, J Hu, X Zhao, FF Sun, K Pascal, H Ren, J Zhang, ACS Sustainable Chemistry & Engineering, vol. 6, no. 10, pp. 12787-12796, 2018. DOI: 10.1021/acssuschemeng.8b01972

Minimizing cellulase inhibition of whole slurry biomass hydrolysis through the addition of carbocation scavengers during acid-catalyzed pretreatment

R. Zhai, J. Hu*, and J. N. Saddler, Bioresour. Technol., vol. 258, pp. 12–17, 2018. DOI: 10.1016/j.biortech.2018.02.124

Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass

L. Long, J Hu* et al., Bioresour. Technol., vol. 257, pp. 334–338, 2018. DOI: 10.1016/j.biortech.2018.02.104

The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges

R Zhai, J Hu*, JN Saddler, Bioresource technology, vol. 258, pp. 79-87, 2018. DOI: 10.1016/j.biortech.2017.12.006

Can We Reduce the Cellulase Enzyme Loading Required To Achieve Efficient Lignocellulose Deconstruction by Only Using the Initially Absorbed Enzymes?

J. Hu, Y. K. Mok, and J. N. Saddler, ACS Sustain. Chem. Eng., vol. 6, no. 5, pp. 6233–6239, May 2018. DOI: 10.1021/acssuschemeng.8b00004

Fractionating wheat straw via phosphoric acid with hydrogen peroxide pretreatment and structural elucidation of the derived lignin

X Wan, D Tian, F Shen, J Hu, G Yang, Y Zhang, S Deng, J Zhang, Y Zeng, Energy & Fuels, vol. 32, no. 4, pp. 5218-5225, 2018. DOI: 10.1021/acs.energyfuels.8b00297

Why does GH10 xylanase have better performance than GH11 xylanase for the deconstruction of pretreated biomass?

J Hu, JN Saddler, Biomass and Bioenergy, vol. 110, pp. 13-16, 2018. DOI: 10.1016/j.biombioe.2018.01.007

Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase

J. Hu, D. Tian, S. Renneckar, and J. N. Saddler, Sci. Rep., vol. 8, no. 1, p. 3195, 2018. DOI: 10.1038/s41598-018-21016-6

Extent of enzyme inhibition by phenolics derived from pretreated biomass is significantly influenced by the size and carbonyl group content of the phenolics

R Zhai, J Hu*, JJN Saddler, ACS Sustainable Chemistry & Engineering , vol. 6, no. 3, p. 3823-3829, 2018. DOI: 10.1021/acssuschemeng.7b04178

Substrate factors that influence cellulase accessibility and catalytic activity during the enzymatic hydrolysis of lignocellulosic biomass

J Hu, R Zhai, D Tian, JN Saddler, In Fang X., Qu Y. (eds) Fungal Cellulolytic Enzymes. Springer, Singapore, 2018. DOI: 10.1007/978-981-13-0749-2_13

Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment

Q Wang, D Tian, J Hu, F Shen, G Yang, Y Zhang, S Deng, J Zhang, Y. Zeng, Y. Hu, RSC advances, vol. 8, no. 23, pp.  12714-12723, 2018. DOI::10.1039/C8RA00764K

Understanding the slowdown of whole slurry hydrolysis of steam pretreated lignocellulosic woody biomass catalyzed by an up-to-date enzyme cocktail

R. Zhai, J. Hu*, and J. N. Saddler, Sustain. Energy Fuels, vol. 2, no. 5, pp. 1048–1056, 2018. DOI: 10.1039/C7SE00569E

Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation

Y Tang, X Dou, J Hu, J Jiang, JN Saddler, Applied biochemistry and biotechnology, vol. 184, no. 1, pp. 264-277, 2018. DOI:10.1007/s12010-017-2545-x



Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites

[1] D. Tian, J. Hu*, J. Bao, R. P. Chandra, J. N. Saddler, and C. Lu, Biotechnol. Biofuels, vol. 10, no.192, 2017. DOI: 10.1186/s13068-017-0876-z

Mechanistic insights into the liquefaction stage of enzyme‐mediated biomass deconstruction

T van der Zwan, J Hu, JN Saddler, Biotechnology and Bioengineering, vol. 114, no. 11, pp. 2489-2496, 2017. DOI: 10.1002/bit.26381

A xylanase-aided enzymatic pretreatment facilitates cellulose nanofibrillation

L. Long, D. Tian, J. Hu*, F. Wang, and J. Saddler, Bioresour. Technol., vol. 243, pp. 898–904, 2017. DOI: 10.1016/j.biortech.2017.07.037

Assessments of Erianthus arundinaceus as a potential energy crop for bioethanol and biomethane production

Y Hu, L Zhang, J Hu, J Zhang, F Shen, G Yang, Y Zhang, S Deng, H Qi, J Yan, S Bai, BioResources, vol. 12,  no. 4, pp. 8786-8802, 2017. 

Characterization of the complex involved in regulating V-ATPase activity of the vacuolar and endosomal membrane

Z Zhang, X Wang, T Gao, C Gu, F Sun, L Yu, J Hu, Journal of Bioenergetics and Biomembranes, vol. 49, no. 5, pp. 347-355, 2017. DOI: 10.1007/s10863-017-9712-1

Insights into the mechanisms of synergistic interactions between auxiliary activity (AA) family 9 enzymes and cellulases during biomass deconstruction

J Hu, A Pribowo, J Saddler, 39th Symposium on Biotechnology for Fuels and Chemicals, 2017. 

How can we enhance the key,“liquefaction” step, of lignocellulosic biomass deconstruction?

T van der Zwan, J Hu, J Saddler, 39th Symposium on Biotechnology for Fuels and Chemicals, 2017.

Valorizing Recalcitrant Cellulolytic Enzyme Lignin via Lignin Nanoparticles Fabrication in an Integrated Biorefinery

D. Tian, J. Hu*, R. P. Chandra, J. N. Saddler, and C. Lu, ACS Sustain. Chem. Eng., vol. 5, no. 3, pp. 2702–2710, Mar. 2017. DOI: 10.1021/acssuschemeng.6b03043

Enhanced delignification of steam-pretreated poplar by a bacterial laccase

R Singh, J Hu, MR Regner, JW Round, J Ralph, JN Saddler, LD Eltis, Scientific reports, vol. 7, pp. 42121, 2017. DOI: 10.1038/srep42121



Enzymatic Hydrolysis of Industrial Derived Xylo-oligomers to Monomeric Sugars for Potential Chemical/Biofuel Production

J. Hu et al., ACS Sustain. Chem. Eng., vol. 4, no. 12, pp. 7130–7136, Dec. 2016. DOI: 10.1021/acssuschemeng.6b02008

Industrially relevant hydrolyzability and fermentability of sugarcane bagasse improved effectively by glycerol organosolv pretreatment

FF Sun, X Zhao, J Hong, Y Tang, L Wang, H Sun, X Li, J Hu, Biotechnology for biofuels, vol. 9, no. 1, pp. 59, 2016. DOI: 10.1186/s13068-016-0472-7

Construction and optimization of trans‐4‐hydroxy‐L‐proline production recombinant E. coli strain taking the glycerol as carbon source

J Wang, Z Zhang, H Liu, FF Sun, C Yue, J Hu, C Wang, Journal of Chemical Technology & Biotechnology, vol. 91, no. 9, pp. 2389-2398, 2016. DOI: 10.1002/jctb.5024

What are the major components in steam pretreated lignocellulosic biomass that inhibit the efficacy of cellulase enzyme mixtures?

R Zhai, J Hu, JN Saddler, ACS Sustainable Chemistry & Engineering., vol. 4, no. 6 pp. 3429-3436, 2016. DOI: 10.1021/acssuschemeng.6b00481

Can we make higher value, purer cellulose by synthesis rather than deconstruction?

M Piddocke, MJ Cho, J Hu, J Saddler, S Renneckar, Abstracts Of Papers Of The American Chemical Society, Vol. 251, 2016.

Oxidative cleavage of some cellulosic substrates by auxiliary activity (AA) family 9 enzymes influences the adsorption/desorption of hydrolytic cellulase enzymes

J. Hu, A. Pribowo, and J. N. Saddler, Green Chem., vol. 18, no. 23, pp. 6329–6336, 2016. DOI: 10.1039/C6GC02288J

The influence of lignin on steam pretreatment and mechanical pulping of poplar to achieve high sugar recovery and ease of enzymatic hydrolysis

RP Chandra, QL Chu, J Hu, N Zhong, M Lin, JS Lee, J Saddler, Bioresource technology ., vol. 199, pp. 135-141, 2016. DOI: 10.1016/j.biortech.2015.09.019

Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes

Q Wang, J Hu, F Shen, Z Mei, G Yang, Y Zhang, Y Hu, J Zhang, S Deng, Bioresource technology, vol. 199, pp. 245-257, 2016. DOI: 10.1016/j.biortech.2015.07.112

The Potential of Biofuels in China. International Energy Agency (IEA) Technical Report

S van Dyk, L Li, D Leal, J Hu, X Zhang, T Tan, J Saddler, IEA Bioenergy.


Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass

FF Sun, J Hong, J Hu, JN Saddler, X Fang, Z Zhang, S Shen., Enzyme Microb. Technol., vol. 79–80, pp. 42–48, 2015. DOI: 10.1016/j.enzmictec.2015.06.020

The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw

FF Sun, L Wang, J Hong, J Ren, F Du, J Hu, Z Zhang, B Zhou., Bioresour. Technol., vol. 187, pp. 354–361, 2015. DOI: 10.1016/j.biortech.2015.03.051

The addition of accessory enzymes enhances the hydrolytic performance of cellulase enzymes at high solid loadings

J. Hu, R. Chandra, V. Arantes, K. Gourlay, J. Susan van Dyk, and J. N. Saddler, Bioresour. Technol., vol. 186, pp. 149–153, 2015. DOI: 10.1016/j.biortech.2015.03.055

The accessible cellulose surface influences cellulase synergism during the hydrolysis of lignocellulosic substrates

J. Hu, K. Gourlay, V. Arantes, J. S. Van Dyk, A. Pribowo, and J. N. Saddler, ChemSusChem, vol. 8, no. 5, pp. 901–907, 2015. DOI: 10.1002/cssc.201403335

The use of carbohydrate binding modules (CBMs) to monitor changes in fragmentation and cellulose fiber surface morphology during cellulase-and swollenin-induced deconstruction of lignocellulosic substrates

K. Gourlay, J. Hu, V. Arantes, M. Penttilä, and J. N. Saddler, J. Biol. Chem. , vol. 290, no. 5, pp. 2938–2945, Jan. 2015. DOI: 10.1074/jbc.M114.627604 



Pretreating lignocellulosic biomass by the concentrated phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis: Evaluating the pretreatment flexibility on feedstocks and particle sizes

Q Wang, Z Wang, F Shen, J Hu, F Sun, L Lin, G Yang, Y Zhang, S Deng,  Bioresour. Technol., vol. 166, pp. 420–428, 2014. DOI: 10.1016/j.biortech.2014.05.088

Relatively high-substrate consistency hydrolysis of hydrothermal pretreated jerusalem artichoke stalk with H2SO3 catalysis

F Shen, Q Wang, Y Li, XJ Li, J Hu, Transactions of the Chinese Society for Agricultural Machinery, vol. 45, no. 3, pp. 168-173, 2014. 

The role of accessory enzymes in enhancing the effective hydrolysis of the cellulosic component of pretreated biomass

J. Hu (2014) . Doctoral dissertation thesis, University of British Columbia, Vancouver, Canada.

Substrate factors that influence the synergistic interaction of AA9 and cellulases during the enzymatic hydrolysis of biomass

J. Hu, V. Arantes, A. Pribowo, K. Gourlay, and J. N. Saddler, Energy Environ. Sci., vol. 7, no. 7, pp. 2308–2315, 2014. DOI: 10.1039/C4EE00891J


The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover

Y. Pribowo, J. Hu, V. Arantes, and J. N. Saddler, Biotechnol. Biofuels, vol. 6, no. 1, p. 80, 2013. DOI:10.1186/1754-6834-6-80 

The synergistic action of accessory enzymes enhances the hydrolytic potential of a ‘cellulase mixture’ but is highly substrate specific

J. Hu, V. Arantes, A. Pribowo, and J. N. Saddler, Biotechnol. Biofuels, vol. 6, no. 1, p. 112, 2013. DOI: 10.1186/1754-6834-6-112

Assessment of potential capacity increases at combined heat and power facilities based on available corn stover and forest logging residues

S Radhakrishnan, JO Paz, F Yu, S Eksioglu, DL Grebner, Energies 6, vol. 9 pp. 4418-4428, 2013. DOI:10.3390/en6094418

Swollenin aids in the amorphogenesis step during the enzymatic hydrolysis of pretreated biomass

K Gourlay, J Hu, V Arantes, M Andberg, M Saloheimo, M Penttilä, J. Saddler., Bioresour. Technol., vol. 142, pp. 498–503, 2013. DOI: 10.1016/j.biortech.2013.05.053


Ethanol production from steam-pretreated sweet sorghum bagasse with high substrate consistency enzymatic hydrolysis

F. Shen, J. Hu, Y. Zhong, M. L. Y. Liu, J. N. Saddler, and R. Liu, Biomass and Bioenergy, vol. 41, pp. 157–164, 2012. DOI: 10.1016/j.biombioe.2012.02.022

The Biorefining Story: Progress in the Evolution of the Forest Products Industry to a Forest-Based Biorefining Sector

John N Saddler, Sergios Karatzos, J Hu, Proceedings of the 55th International Convention of Society of Wood Science and Technology, pp. 1-14, 2012.


The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?

J. Hu, V. Arantes, and J. N. Saddler, Biotechnol. Biofuels, vol. 4, 2011. DOI: 10.1186/1754-6834-4-36

Evaluation of hemicellulose removal by xylanase and delignification on SHF and SSF for bioethanol production with steam-pretreated substrates

F. Shen, L. Kumar, J. Hu, and J. N. Saddler, Bioresour. Technol., vol. 102, no. 19, pp. 8945–8951, 2011. DOI: 10.1016/j.biortech.2011.07.028